56. Jin, L., C. Zhao, Z. Gong, J. Pan, W. Wei, G. Wang and Y. Cui, “Hydrogen-promoted graphene growth on Pt(111) via CVD methods.” Surf. Interfaces, 2021, 26. https://doi.org/10.1016/j.surfin.2021.101383.
57. Li, Y., X. Zhao, Y. Cui, F. Yang and X. Bao, “Oxidation-induced structural transition of two-dimensional iron oxide on Au(111).” J. Phys. D: Appl. Phys., 2021, 54(20). https://doi.org/10.1088/1361-6463/abe66d.
58. Liu, Y., M. Li, Z. Chen, Y. Cui, J. Lu and Y. Liu, “Hierarchy Control of MFI Zeolite Membrane towards Superior Butane Isomer Separation Performance.” Angew. Chem. Int. Ed., 2021, 60(14): 7659-7663. https://doi.org/10.1002/anie.202017087.
59. Pan, J., W. Wei, Z. Gong and Y. Cui, “Effect of overlayer-substrate interaction on the coalescence behaviors of in-plane graphene/hexagonal boron nitride heterostructures.” Carbon, 2021, 177: 19-25. https://doi.org/10.1016/j.carbon.2021.01.149.
60. Pan, J., W. Wei, R. Wang, R. Huang, C. Zhang and Y. Cui, “An Ammonization-Based Transformation of Hexagonal Boron Nitride on Ir(111) from Surface to Near-Surface Regions.” J. Phys. Chem. C, 2021, 125(43): 23929-23936. https://doi.org/10.1021/acs.jpcc.1c07277.
61. Qi, P., L. Zhao, Z. Deng, H. Sun, H. Li, Q. Liu, X. Li, Y. Lian, J. Cheng, J. Guo, Y. Cui and Y. Peng. “Revisiting the Grain and Valence Effect of Oxide-Derived Copper on Electrocatalytic CO2 Reduction Using Single Crystal Cu(111) Foils.” J. Phys. Chem. Lett., 2021, 12(16): 3941-3950. https://doi.org/10.1021/acs.jpclett.1c00588.
62. Rao, Z., Y. Cao, Z. Huang, Z. Yin, W. Wan, M. Ma, Y. Wu, J. Wang, G. Yang, Y. Cui, Z. Gong and Y. Zhou, “Insights into the Nonthermal Effects of Light in Dry Reforming of Methane to Enhance the H2/CO Ratio Near Unity over Ni2O3.” Acs Catal., 2021, 11(8): 4730-4738. https://doi.org/10.1021/acscatal.0c04826.
63. Tang, R., L. Wang, M. Ying, W. Yang, A. Kheradmand, Y. Jiang, Z. Li, Y. Cui, R. Zheng and J. Huang, “Multigraded Heterojunction Hole Extraction Layer of ZIF-CoxZn1-x on Co3O4/TiO2 Skeleton for a New Photoanode Architecture in Water Oxidation.” Small Science, 2021, 1(4). https://doi.org/10.1002/smsc.202000033.
64. Wang, D., K. Chang, Y. Zhang, Y. Wang, Q. Liu, Z. Wang, D. Ding, Y. Cui, C. Pan, Y. Lou, Y. Zhu and Y. Zhang, “Unravelling the electrocatalytic activity of bismuth nanosheets towards carbon dioxide reduction: Edge plane versus basal plane.” Appl. Catal. B Environ., 2021, 299. https://doi.org/10.1016/j.apcatb.2021.120693.
65. Wang, D., C. Liu, Y. Zhang, Y. Wang, Z. Wang, D. Ding, Y. Cui, X. Zhu, C. Pan, Y. Lou, F. Li, Y. Zhu and Y. Zhang. “CO2 Electroreduction to Formate at a Partial Current Density up to 590 mA mg-1 via Micrometer-Scale Lateral Structuring of Bismuth Nanosheets.” Small, 2021, 17(29). https://doi.org/10.1002/smll.202100602.
66. Wang, R., H. Wang, X. Weng, J. Dai, Z. Gong, C. Zhao, J. Lu, Y. Cui and X. Bao, “Exploring the phase transformation in ZnO/Cu(111) model catalysts in CO2 hydrogenation.” J. Energy Chem., 2021, 60: 150-155. https://doi.org/10.1016/j.jechem.2020.12.023.
67. Wang, Y., P. Ren, J. Hu, Y. Tu, Z. Gong, Y. Cui, Y. Zheng, M. Chen, W. Zhang, C. Ma, L. Yu, F. Yang, Y. Wang, X. Bao and D. Deng, “Electron penetration triggering interface activity of Pt-graphene for CO oxidation at room temperature.” Nat. Commun., 2021, 12(1). https://doi.org/10.1038/s41467-021-26089-y.
68. Yang, N., Z. Chen, D. Ding, C. Zhu, X. Gan and Y. Cui, “Tungsten-Nickel Alloy Boosts Alkaline Hydrogen Evolution Reaction.” J. Phys. Chem. C, 2021, 125(49): 27185-27191. https://doi.org/10.1021/acs.jpcc.1c07465.
69. Zhang, Z., X. Chen, J. Kang, Z. Yu, J. Tian, Z. Gong, A. Jia, R. You, K. Qian, S. He, B. Teng, Y. Cui, Y. Wang, W. Zhang and W. Huang, “The active sites of Cu-ZnO catalysts for water gas shift and CO hydrogenation reactions.” Nat. Commun., 2021, 12(1). https://doi.org/10.1038/s41467-021-24621-8.
70. Zou, S., B. Lou, K. Yang, W. Yuan, C. Zhu, Y. Zhu, Y. Du, L. Lu, J. Liu, W. Huang, B. Yang, Z. Gong, Y. Cui, Y. Wang, L. Ma, J. Ma, Z. Jiang, L. Xiao and J. Fan, “Grafting nanometer metal/oxide interface towards enhanced low-temperature acetylene semi-hydrogenation.” Nat. Commun., 2021, 12(1). https://doi.org/10.1038/s41467-021-25984-8.